Astro Gear: May 30, 2018

May 30, 2018

Narrowband imaging on the cheap?

It's tempting to say "here's what you can expect from a $129 Hydrogen-alpha filter", but it's never as simple as that, is it? Perspectives and opinions vary, but I consider this a pretty good H-alpha narrowband shot of the Crescent Nebula (NGC 6888), with some great contrast--the Crescent structure itself stands out, and I still managed to bring in a lot of the surrounding dust and clouds of ionized hydrogen. I used an Astronomik 1.25" 12nm Ha filter, an Atik 414EX mono CCD, iOptron CEM25P EQ mount, and I took 4 x 1200 second subs + 15 dark frames, all stacked in DSS. I shot these frames from my backyard, on a clear night with good seeing (Bortle 4, SQM: 20.62 mag/arc sec² according to https://www.lightpollutionmap.info). I've never shot deep space objects with 6, 5, or 3nm bandpass filters, but a 2" Baader 7nm used to be my primary Hydrogen-alpha filter--and I loved it. When I started out in astrophotography I was thinking long-term and went with 2" filters for everything--and it cost me a bunch. A couple years ago I switched to 1.25" filters, both for cost savings and pairing with the smaller Atik 414EX sensor--2" wasn't necessary. It also allowed me to get the Atik EFW2 with the 9-position filter wheel, so I can run with LRGB, Clear, Ha, OIII, SII, near-IR all in one neat motorized package. Because I was looking to save to money I went with a cheap Ha filter--the Astronomik 12nm H-alpha runs around $130 USD. Very inexpensive when compared to the $300 2" Baader I used to use regularly, and nowhere near the $900+ Astrodon 3nm 2" filter. I'm sure the Astrodon kicks ass--they're one of the premier filter manufacturers. But do you need a $900 filter to shoot narrowband? If you have fairly dark skies in your neighborhood (or within driving distance), I would say absolutely not. Will it make things easier when it comes to increasing SNR in light polluted skies? Absolutely. Will it make things easier when it comes to increasing contrast and pulling in those fainter wisps of dust and hydrogen? Probably. But I wouldn't hold off on narrowband imaging just because you can't afford the best. There are just too many cool targets in the night sky that you're not going to pick up with RGB. And that's one of the advantages of our hobby. You can shoot forty subs tonight, stack, process, and post them, and then come back tomorrow, next week, or next year and reshoot the same target with a different camera, faster scope, or better filters. Some targets never get old, and if they do, there are mysterious absorption nebulae and integrated flux nebulae--and even crazier things in the night sky to pursue. Beyond that, there are always interesting new wonders below the horizon--or above, depending on which hemisphere you spend most of your time.

Short thread on this topic at Cloudy Nights: https://www.cloudynights.com/topic/612314-7nm-vs-12nm-h-a-filter  

The general conclusion is get the narrowest bandpass you can afford, which is the right answer, especially if you have any light pollution problems.